
Robert McCaull

Bio 131 Final Project Report (Spring 2020)

My project was to modify one of the algorithms we learned in class (a greedy motif-finding

algorithm) so that it would spread its work across several execution threads, rather than just a single

one. In theory, by doing this, a computer could execute certain intensive parts of the algorithm in

parallel to each other, allowing a computer with multiple processors to fully take advantage of its

resources when executing the algorithm. This could potentially result in much faster computations, if

many processors were available. In practice, there are complicating factors to achieving this, some of

which I wasn’t able to solve. However, I was able to produce a correct algorithm that (theoretically)

achieves the goal of parallelization.

The biological problem that my project is directed towards is the problem of finding

commonalities between different DNA sequences. If we have a set of sequences which all serve a

similar function, and we have the ability to find common factors between them, we can narrow in on

which parts of the sequences contribute towards the common function.

To solve this biological problem, we first solve a related computational problem, and then apply

our solution to the particular case we’re interested in. The related computational problem is as follows:

given a list of strings and an integer k, we would like to come up with a list k-length substrings (called

motifs or kmers), one for each string, which are as similar to each other as possible. By ‘as similar as

possible’, we mean the ones which differ as little as possible from the consensus string they encode.

Searching through all possible lists of motifs to find the best one would take a prohibitively

long time. To deal with this, we use a greedy algorithm which only considers a subset of the possible

lists of motifs. The lists of motifs this algorithm outputs are not guaranteed to be perfect – such is the

nature of a greedy algorithm – but they don’t need to be perfect to be useful, and the gains we make in

reduced running time are considerable. My project is just an extension of this greedy algorithm, which

is (theoretically) faster still, since it can be run concurrently on multiple processors.

The non-parallel greedy algorithm works by starting with a motif from the first input string, and

then greedily adding the best motif (given the motifs that were already chosen) from each following

string in turn, to build a full list of candidate motifs. It then repeats this process for each other motif in

the first string. As it does this, it keeps track of which full list of motifs it has seen so far that was best,

https://repl.it/@RobertMcCaull/Final-Project

